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I. INTRODUCTION

In this paper we show that the rational functions are not worse than the
spline functions as a tool for approximation in Lp metric (1 ~ P < CXl ).

Denote by H n the set of all algebraic polynomials of nth degree with real
coefficients and by R n the set of all rational functions of nth degree, i.e.,
RERn if R=p\/P2 ,P"P2 EHw By S(k,n, [a,b]) we shall denote the set
of all piecewise polynomial functions (spline functions with defect) of
degree k - 1 with n + I free knots on [a, b], i.e., qJ E S(k, n, [a, b]) if there
exists n + 1 points X o= a < x, < ... < X n = b such that in each interval
(x i _" x;), qJ is an algebraic polynomial of degree k ~ 1.

Denote by Rn(f)p=Rn(f, [a,b])p and S~Cf)p=S~(f, [a,b])p the best
approximations ofIE Lp[a, b], I ~ P ~ 00, by means of the elements of Rn

and S(k, n, [a, b]), respectively, in L p metric, i.e.,

Rn(f)p = Rn(f, [a, b])p = inf{ III - Rll p: R E Rn},

S~(f)=S~(f, [a,b])p= inf{llf-qJVqJES(k,n, [a,b])}.

By 1I/II p = 11/11'p[a,h] we shall denote the L p norm of I on [a, b]
(1 ~ p~ (0).

Throughout the paper C, C I' C2'"'' D, D, ,... denote positive constants
depending only on the corresponding parameters which can be written in
brackets.

It is well known that the rational and spline approximations of functions
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are closely connected. V. A. Popov [I] proved the following estimate: If
fE C[O.I], then for /1 ~ 1

11

S,;(/), ~ 27/1 1 L R,.U),.
\'~O

In [2] we have obtained the following two estimates:

(i) IffELI'+,[a,b], l~p<CXJ, 8>0, k~1 and ~>O, then for
n ~ max { I, k - I }

n

RnU)p ~ Cn x L v' IS:U)I' H'

v=)

(1)

where C = C(p, k, 8, ~, a, b).

(ii) IffELpH[a,b], I ~P<CXJ, 8>0, k~l and O<IY..<k, then for
/1~1

I!

S~U)p~Cn ' L (v+ 1)' lRAf)p+£'
v=o

V. A. Popov [3] obtained connection between the rational uniform
approximation of functions and the polynomial L p (p> 1) approximation
of their derivatives. In [4, 5] we have proved some connections between
the rational and spline approximations of functions and their derivatives in
different L p metrics. Yu. A. Brudnyi [6] announced some results, which are
closely connected to ours.

The main result of this paper is announced in [7].

2. THE MAIN RESULT

The aim of this paper is to prove the following improvement of the
estimate (1 ).

THEOREM 2.1. IffELp[a,b], l~p<CXJ, k~l and ~>O, then for
/1 ~ max {1, k - l}

where C = C(p, k, ~).

n

R(f) :<C -x" V,-lSkv(f)p,n p'" n L...
V= 1

(2)
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Moreover, if we put f(x) = 0 for x E (- 00, 00 )\[a, b], then for n ~ k - 1

Rn(f, (- 00, oo))p ~ Cn-~ {llfll p + vtl V~-IS~(f, [a, b ])p}, (3)

where C = C(p,k,rx).

Clearly the estimates (2) and (3) do not hold true for p= 00.

COROLLARY 2.1. rr S~(f)p = O(n- Y), 1~ P < 00, Y > 0, then Rn(f)p =
O(n- Y ).

Theorem 2.1 can be used successfully in more general situations but for
rates of convergence not better than O(n- Y ).

COROLLARY 2.2. If S~(f)p=O(n-Yw(n-l)), where l~p<oo, k~l,

y~ 0, and w is any increasing on [0, 00 ) function which tends to zero as
15---+0+ andw(2b)~2w(b)for b~O then Rn(f)p=O(n-Yw(n- 1

)).

3. AUXILIARY RESULTS

The proof of Theorem 2.1 is based on the following statement:

THEOREM 3.1. Let cp E S(k, m, [a, b]), where k ~ 1, m ~ 1 and [a, b] is
an arbitrary compact interval, and let 1~ P < 00. Put cp(x) = 0 for
x E (- 00,00 )\[a, b]. Then for each A> 0 there is a rational function R such
that

and

where D = D(p, k) > 1.

The same statement in another form: In the above assumptions the
following estimate holds true for n ~ 1:

where C = C(p, k) > O.
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In order to prove Theorem 3.1 we need the following lemma.

LEMMA 3.1. Let QEHb k?O, l~p<oc, and let Ll=[a,b] be an
arbitrary compact interval. Then for each A> °there is a rational function R
such that

deg R ~ D In
2 (e +~),

IIQ - RIILp(A) ~ DAIIQII Lp(A)

and

where

IRe )1 <D ( ILlI )4 AIIQIILp(A)
x"" ILlI+p(x,Ll) ILll1/p for x E ( - OC, :xl )\Ll,

a - x for x ~ a

D = D(p, k), p(x, Ll) = ° for x ELl

x - b for X? b

is the distance from the point x to the interval Ll and ILl I = b - a.

The proof of Lemma 3.1 is based on the following two lemmas:

LEMMA 3.2. IfQEHk, k?O, I~p<oc and Ll=[-b,b], b>O, then
for x E ( - oc, oc )\Ll

where C = C(k).

Proof Lemma 3.2 follows immediately from the following well-known
inequali ties:

(i) If Q E H b then for Ixl ? I

IQ(x)1 ~ IIQIIL,[ 1.1]ITk(x)1 ~ IIQllcd 1.11(lxl +Jx2 -1)k

~ 2kllQII L'l [ uJlxlk,

where Tk(x) = cos(k arccos x) for Ixl ~ I; see [8]. Consequently, if Q E Hk,
then for Ixl ? b

IQ(x)1 ~2kIIQIII,r hh] I:r =22k IIQlltA~~)IXlk
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(ii) If Q E H b then

IIQII ~ C(k) IIQIILp(A) I
Lcx,(A) " ILJ11/p

145

LEMMA 3.3. If IX> 0,0 < (5 ::::; 1, 0 < y ::::; 1 and r ~ 0, r - integer, then there
is a rational function a such that

deg a::::; Bin (e +~) In (e +t) + 4r, (4)

for Ixl ~ d + C5d

(5)

(6)

and

for x E ( - 00, 00 ), (7)

where B> 1 is an absolute constant.

Proof By Lemma 2 in [9] it follows that if 0::::; £ < ~ and n ~ 1 then the
rational function S(x)=P(x)/P(-x), p(x)=n;l~l (x_£,/n), SERn,
satisfies

and

1 (c 2 n )
IS(x)1 ~~ exp In(1/£) for x E [ - 1, -I:]

for XE [I:, 1],

(8)

(9 )

where C l' C 2 > 0 are absolute constants.
Using the notations above, put

1 [l+Ci 1 ( 1) l
£= e+2/b' n= 2C

2
In~ln e+ y + 1 ,

1
aj(x) = S2(X)((1- x)/(1 + x))2r + l'

where [x] denotes the integer part of x.
Obviously
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(II)

where B I > °is an absolute constant. By (8) and the choice of Ie; and n we
getforxE[-I, -1:]:::::>[-1, -6/2]

(l+x)2r CT(1+x)2r )
IlJ1(x)1 ~ S2(X) ~ {2C

2
n l ~ (1 + x)-'y

exp In(l/£)J

and by (9) we get for x E [I:, I]:::::> [6/2, I]

Clearly

(12 )

Consider the rational function

lJ(X) = lJ[(<p(x)),

for x E ( - 00, 00).

d2 _X2

<P(x)=-d22"
+X

(13 )

We shall show that lJ satisfies (4)-(7). Indeed, by (10) we obtain

deg (f = 2 deg lJ I ~ 2B 1 In ( e +~) In ( e +D+ 4r

= BIn ( e + ~) In ( e +~) + 4r,

i.e., lJ satisfies (4). Obviously, (13) implies (7). It remains to show that lJ
satisfies (5) and (6). Clearly, the function <p is even, strictly decreasing on
[0,00), <p(o) = 1, <p(d) =0, Iimx~ +00 <p(X) = -1. Since <p(d-6d)~(j/2 and
<p(d + 6d) ~ -6/2, then

6/2 ~ <p(x) ~ 1

-1 ~ <pix) ~ -6/2

for Ixi ~d-6d

for Ixl ~d+(jd.

(14 )

(15)

By (12) and (14) we get o~ l-lJ(x)~y for Ixl ~d-(jd, i.e., lJ satisfies (5).
By (11) and (15) we obtain

(
2d2 )2r (2d )4r

O~lJ(x)~(l+<p(x)fry= d2+X2 y~ d+x y

for Ixl ~ d + 6d, i.e., lJ satisfies (6). I
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Proof of Lemma 3.1. Without loss of generality we shall assume that
A = [ - b, b]. If A. ~ 1, then the rational function R =. 0 satisfies the
requirements of Lemma 3.1.

Let 0 < A. < 1. Consider the rational function

R= aQ,

where a is the rational function from Lemma 3.3 with <5 = }.P/2,
d= b/( 1+ <5), y = A., r = k + 1.

By (4) we get

deg R ~ deg a + deg Q~ B In ( e +~) In ( e +; ) + 4r + k

~ B In (e + ~p) In (e +D+4(k + 1) + k

and hence

(16)

Now we estimate IIQ-RIILr(Ll)' By (5) we obtain

1-<5
IQ(x) - R(x)1 = (1- a(x))IQ(x)1 ~ }.IQ(x)1 for Ixl ~ d- <5d=- b. (17)

1+<5

If d-<5d~lxl~d+<5d, I.e., ((I-<5)/(I+<5))b~lxl~b, then by (7) and
Lemma 3.2 we get

IQ(x) - R(x)1 ,;::: IQ(x)1 ,;::: C(k) IIQIILr(Llllxl
k

,;::: C (k)IIQII Lr(Ll) (18)
"" "" (1-<5 )k+l/P"" I IA/I/P'

2 1+<5 b

Using (17) and (18) we obtain

(

b )I/P
IIQ-RIILr(,1)= L

h
IQ(x)-R(x)IPdx

=(f-((l-b)/(I+b»)b +f«(l-b)/(l+b»h +fh )l/P
-h -((l-b)/(I+b»h (l-b)/(I+bllh

';:::{2(b_ 1 -<5 b)(C IIQIILr(,1l)P +fb ,1PIQ(X)IPdx}I/P
"" 1 +<5 I IAII/p -b

~ C2 ,1II QII Lr«l)'



148

Hence

PENCHO P. PETRUSHEV

(19)

If Ixl > h, using (6), Lemma 3.2 and the fact that 4r ~ k + 4 we obtain

Hence

IR(x)1 ,c C(k) ( IAI )4 }-IIQII LcILl) for Ixl > h. (20)
"" IAI+p(x,A) IAI1/p

The estimates (16), (19), and (20) prove Lemma 3.1. I
Proof of Theorem 3.1. Assume that rpES(k,m, [a,b]), k~l, m~1.

Then there are points X o= a < x I < ... < X m = h such that for each i
(I ":;;i":;;m) there is polynomial Q;EHk _ 1 such that rp(x)=Q;(x) for XE

(Xi \,x;). We put <p(x)=O for xE(-oo,oo)\[a,b]. Let }_>O and
1,,:;; p < CD.

In what follows we shall use the following notations: A = [a, b],

11 m + 1 = [x m , C1J),

i= 1, 2,..., m,

Without loss of generality we shall assume that II rp II Lp(Lli) =1= 0 for
i= 1, 2'00" m.

Now we apply Lemma 3.1 for the function rp in each interval A;
(I ":;;i":;;m) with ),,=)A/llrpIILc(Lli)' We obtain that for each i (1 ":;;i":;;m)
there is a rational function R; such that

deg R;":;; D In 2 (e +±) = D In 2 (e +Ilrp~,~ti} (21)

II <p - Rill Lp(Lli)":;; Di,11 rpll LcILl,) = DAA (22)

and

for x E ( - cX!, 00 )\A;, (23)

where D = D(p, k) > O.
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We shall show that the rational function R = L7'~ 1 R i satisfies the
requirements of Theorem 3.2. First we estimate deg R. To this end we use
(21) and the facts that the function In2(e + x) is concave on [0, ex)) and
In2(e + x) < 41n2(e + x P ) for x> O. We get

deg R:( i~l deg R i :( i~l D In
2 (e + IICP1~p(,d'J)

~4D ~ I 2 ( + IICPllt(,d,J)"" 1.__ neAPAP
1= I

:( 4Dm In 2 (e + L7'~ I ~ cP II t(,d'l)
m PAP

= 4Dm In 2 (e + Ilcpll t(,d))
mAPAP

= 4Dm In
2

(e +A1p ):( 4Dpm In
2

(e +~).

Thus we have

deg R:( Dim In 2
(e +~),

It remains to estimate Ilcp-RIILp(-.YJ,YJ)' We need some notations.

(24)

DEFINITION 3.1. We shall call the set of intervals {LI v: io :( v :( i d,
1:( io :( i1 :( m + 1, a left class of interval or briefly a left class, if ILI vi < ILI ill
for v= io, io+ 1'00" i l - 1 and ILlio-11 ~ ILliJ

We shall suppose that ILlol = ILl m + II> ILlvl, v= 1, 2'00" m.
By Q we shall denote the set of all left classes of intervals.

Some Properties of the left classes of intervals. (a) If K, KE Q, then
K n K= 0 or K c K or Kc K. Therefore the relation K c K realizes order
in the set Q with the final element the left class {LI v: 1 :( v :( m + 1}.

(b) For each i (1 :( i:( m + 1) there is exactly one left class K i E Q
such that the interval LI i is the last interval is K i , i.e., K i = {LI v: io :( v:( i}.
In what follows we shall use this notation. Thus there is one to one
mapping of the set {LI v: 1:( v:( m + I} on the set Q. Consequently, the
number of the elements of Q is m + 1.

(c ) If K E Q and LI i E K (1 :( i:( m + 1), then Ki c K.

DEFINITION 3.2. We shall call the left class K left subclass offirst order
of the left class K, if Kc K, K-# K and there is no class K* E Q, K* -# K
such that Kc K* c K, i.e., K follows K immediately.
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By Q; (1 ,,:; i,,:; m + 1) we shall denote the set of all subclasses of first
order of the left class K; and by l1i the number of the elements of Q i'

(d) We have for i= 1, 2,..., m+ 1

More exactly, for each i (1":; i":; m + 1) there are indexes 0 ":;jo <
jt < ... <jp,=i-l so that

ttj

Ki = {Lls:jo+ 1":;s,,:;i} = U K;,u {Ll i },

\,=1

Q.={K:l":;v":;lI}l.lv t""l ,

K -{A.· 1~~'}
j, - LJ S" } v··· t + '" s '" } v

Hence ILljol ~ ILI;I > ILlill ~ ILlhl ~ ~ ILlj!,,1
s = jv-t + 1, jv-l + 2,..., jv - 1; v = 1, 2, , l1i'

and for

(e) Each class K E Q, K =f. Km + t = {LI v: 1,,:; v":; m + I}, is a left sub­
class of first order of some left class and therefore Q = U7~,1 Q i U {Km + I}'
On the otherhand Q; n Q j = 0 for i =f. j. Consequently,

m+ 1

L l1i=m.
i= I

(25)

The properties (a) - (e) of the left classes follow immediately by the
definitions.

Analogously (more exactly symmetrically) we introduce the notions right
class of intervals and right subclass of first order of some right class. We
shall denote by Q* the set of all right classes, by Kt the right class in which
LI i is the first interval (0":; i,,:; m), by Q t the set of all right subclass of first
of K i* and by 11,* the number of the elements in Q,*. The right classes have
properties symmetrical to the properties (a)-(e). We formulate only the
following property:

m

L I1t =m.
i=O

(26)

We need the following lemmas, where we use the notations introduced
above.



RATIONAL AND SPLINE APPROXIMATIONS

LEMMA 3.4. The following inequality holds true for 1~ i ~ m:

151

for x~x;, (27)

where C= C(p, k).

Proof Let K, = {A v: io~ v~ i}. If io = i, then the estimate (27) follows
by (23) immediately.

Let io< i and x ~ x;. By (23) we obtain

By the definition ofleft class it follows that IA"I < IA;I, v=io, io+ 1,..., i-I.
Denote

r= 1, 2, ....

Clearly, for r~ 1

Consequently

The importance of the notations introduced will become clear by the
following lemma.

640!50,'2-5
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LEMMA 3.5. The following estimate holds true f()r i = 2, 3, ... , m + 1:

where C = C(p, k).

Proof Let 2 ~ i ~ m + I. By the property (d) of the left classes of inter­
vals it follows that there are indexes 0 ~jo < jj < ... < jl" = i-I so that

11i

K;= {A,:Jo+ 1~s~i} = U Kj,u {A;L
v=l

K -}A.· 1<:'<:'},,-ILls·j,· 1+ "S"j"

Hence

IAiol ~ 1,1;1 > IAi,1 ~ 1,1121~ ... ~ IAi,), 1,1,1 < IAi,1

for s=j,_I+I,j, ,+2, ...,j,,-1;v=1,2'''',J1,' (28)

We have

t I~~: R,,(Xf dx

~2P I L.1,,~j R,.(Xf dx+2
P IL.I'~~~I R'(Xf dx

=11 +12 ,

First we estimate II using (23) and the fact that IAioi ~ 1,1;1; see (28). We
obtain for x E A;

Denote

G, = {v: 2'1 Aiol < 1,1,,1 ~ 2'+ IIAiol, 1~ v~ joL

r = 0, ±1, ±2, ....
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Clearly, for r ~ 0, x E J i we have
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If r ~ -1, then

Consequently

AA
~C-­
'" I / Jio/llp'

Integrating we obtain

(29)
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Now we estimate 12 , Using Lemma 3.4 we obtain

I
'II R,,(x)! ~ f I I RI(X)I ~ C f ( IL1 j

,1 )'4. (30)
"~li)+1 s~1 "~i, ,\1 s~1 ILlj,l+x-xj, ILlj,IJ\

Denote y,=x, I+L;:'~,ILlhl, 1=1,2,... ,p" and Y/I,+I=X, I' We have
X, I = Y I', + I < Y1', < .,. < Y I .

If XE [YI' (0), then by (28) and (30) we get

I
, I I I', ( \Ll\ ) 3 .leAI R,(x) ~c I I., --1/

"~llI+1 \~I L~'~IIJi,l+x-YI 1,1/,11'

1', ( ILl I )3 1
~OA I, __,.

I slJ I+ x - v 1,1 11/1',-= I ./S 0/ 1 ./.1'

Hence

(f /' 'II R,,(X)lp dX)' 1/1'
.11 v =./0 + 1

{f J'(I"( \Ll\ )3 1 )1' )1/1'<: C.leA I h --,,' dx
" ,", \~I sIJI,i+x-YI jJj,I 1P

I', { ". ( 1,11 )31' I }I/I'
~Cd I Io -dx,~I t sIJj,l+x-YI IJj,1

x I
~ CXA I -'-1-; .

\" ,I'
\'= 1 '

Consequently

(31 )

Let x E [Y,+ I, Y,], 1~ I ~ p,. By (30) we obtain

First we estimate III' Denote

r=O, I, ....
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Using (28) we obtain

Using (28) again we get

I'i ( 1,11 )3 1,:::: ~ h
(J2" L. --I-Ip'

\~I+I (s-/)IJ/,I +x- YI+I 1,1/,1

Consequently
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I
i~ I I {I I', ( IJi,1 )3 1 }L R)x) ~ Cs}"A ----v;; + I _ _ ~ ,

v~jo+ 1 IJj,1 \~,+ I (s /)1 Ji,1 + x Y,+ I IJi,1

where Cs = Cs(p, k). Now we take the Lp norm and obtain

U:,'+I Iv~~~ I Rv(Xf dxYiP

~ CsAA {(f' ~)IIP
"+1 IJill

+ f (fn ( IJi,1 )3P
~)IIP}

\~'+lV',1 (s-/)IJj,1 +x- Y,+ 1 1,1/,1

~CsA.A {I +\~~+I (S_/~3 liP}'

Consequently, for 1= 1,2,..., J.1i

J.~'+l I\'~~~I Rv(Xf dX~C6APAP,
Combining this estimate with (31) we get

LJt: Rv(Xf dx ~ L~-l I:t: Rv(Xf dx

~C(J.1i+1)APAP, C=C(p,k). I

The following lemma can be proved in a simalar (symmetrical) way.
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LEMMA 3.6. The follml'ing estimate holds true /f)r i = 0, 1,... , m - 1:

1

m II'L, \~~+I R,,(x) dX:'(C(fl;*+ l)}I'AI',

where C = C(p, k).

Completion of the Proolof Theorem 3.1. Using (22), (25), (26), and
Lemmas 3.5 and 3.6 we obtain

1147-RIILP(-x'W)=II47-'~1R'Ll x'X)=Ctolll47-'~1RV[lAJ1IP

:'( [tl

31' -I (LJ~,Rv(Xfdx

+t 147(x)-Ri(x)lPdx+ t I"~i Rv(Xf dxfP

:'( 3 {C(flJ + 1)..l.PAP + i~1 (C(fli+ 1) I,PAP + DPJePAP

+ C(fl,* + 1JAPAp)) + C(flm + 1+ 1) APA PriP

:'( C I I,A Ctl1

fli + m + i~O fli*) lip

:'( 3C I m lipJeA = 3C1 AII47 II LplA)'

Consequently

C = C(p, k).

This estimate together with (24) establishes Theorem 3.1. I

Proof of Theorem 2.1. Let 47m E S(k, m, [a, h]) and 47m satisfies
Ilf - 47mll Lp(A) = S~(f)p, m ~ 1, A = [a, b]. For i ~ 1 we have 472i - 472' IE

S(k, 2 i + 1, A) and

11472' - 472,-111 Lp(A):'( Ilf - 472,11 LplA) + Ilf - 472,-111 LplA) :'( 2S~i l(f)p.

Using Theorem 3.1 and the function 472' - 472'-1 with Je = 2(i'), we obtain
that there is a rational function R i such that

D=D(p,k»l, (32)
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IIip2i - ip2i-1 - Rill Lp(.J) ~ 2(i - s)~11 ip2' - ip2i- 111 Lp(.J)

~ 2(i s)<>+ IS~i_l(f)p. (33)

Let s ~ 0 be an integer. Consider the rational function R = I.:~ 0 R i ,

where R o= ip I E H k _ I· First we estimate deg R. By (32) we obtain

S 5

N=degR~ L degRi~ L D·2i+lln2(e+2(s-i)~)+k-l

i~O i=O

s

~DI(a+l)2 L 2i(s-i)2~Dia+lf·2s.

i= t

Consequently

(34 )

Now estimate III- RII Lpl.J). By (33) we get

s

~ III - ip2,11 Lpl.J) + L IIip2i - ip2'-1 - Rill Lpl.J) + Ilip I - Roll LpILl)

i= 1

s

~ S~.,(f)p + L 2(i - s)~ + I S~, l(f)p
1= I

s

~ 2~ + 1. 2-s~ L 2i~S~i(f)p

;=0

2,'

~22~+1·2-s~ '\' v~-ISk(I)
"""" ~ l' p'

v=l

Hence, by (34) and the estimates above it follows that for each s ~ 0

2·'

RN(f,L1)p~22~+1·2-S~ L v~-IS~(f)p,

v~l

where N ~ D 2(a + 1f· 25
, D 2= D 2(p, k) > 1.

Nowletn~max{l,k-l}. Ifn~A=D2(a+l)2, then

n

Rn(f)p~Rk_I(f)P~S1(f)p~Aan-a L v~-lS~(f)p.

\1= 1

(35)
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Consequently
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"
R"U),,';;' C111 ~ L v~- IS:Cll"

\' = 1

for max{ I, k - I } ,;;, 11';;' A, (36)

where C = C1(p, k).
Let 11>A. We choose s?O such that A·2'<11,;;,A·2 s + 1

• Then by (35)
we obtain

2\

R"u)",;;,2
2H1

'2-" L v~ 'S:U)"
v=l

"
';;'C2(p,k,IX)11-~ L v~ tS:U)".

\'=1

These estimates together with (36) imply (2). The estimate (3) can be
proved in a similar way. I

Proof of Corollary 2.2. Since w(2<5)';;' 2w(<5) for <5? 0, then w(A<5)';;'
2().+I)w(<5) for ).,<5?O. Now iffEL,,[a,b] and S~U),,';;'Cl11-;'W(11 I),
1,;;, P < 00, then using Theorem 2.1 we obtain

f/

RnCll",;;,C11 ~ I v~-ICtV YW(v- l )
\'=1

f/

---- C - ~ '\' v~ 1
"":2 11 L...,

\'=1

=0(11 ;'W(11 I))

for IX ? y + 2. I
Remark 3.1. The proof of Theorem 2.1 is based on Lemma 3.3. Clearly,

this lemma can be used successfuly for the uniform rational approximation
of functions with finite support on (- 00, 00). It is easy to see that
Lemma 3.3 implies the following estimate: If

then

cp(x) = I -Ixl

cp(x) = 0

for Ixl';;' 1,

for Ixl > I

where

C>O, (37)

Rf/(cp, (-00, oo))c= inf sup Icp(x)-R(x)l.
RERn X-E(-CO.X)
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The estimate (37) generalizes the well-known result of D. Newman [10]:
Rn(lxl, [-1, 1])c=O(e-~) to the interval (-00,00).
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