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1. INTRODUCTION

In this paper we show that the rational functions are not worse than the
spline functions as a tool for approximation in L, metric (1 < p<0).

Denote by H, the set of all algebraic polynomials of nth degree with real
coefficients and by R, the set of all rational functions of nth degree, ie.,
ReR,if R=P,/P,,P,, P,e H,. By S(k,n, [a, b]) we shall denote the set
of all piecewise polynomial functions (spline functions with defect) of
degree k — 1 with n+ 1 free knots on [a, ], ie., @€ S(k, n, [a, b]) if there
exists n+ 1 points xg=a<x, < -~ <x,=5 such that in each interval
(x;_ (., x;), @ is an algebraic polynomial of degree k — 1.

Denote by R,(f),=R,(f, [a,b]), and Si(f),=S%(f, [a, b]), the best
approximations of fe L [a, b], 1 < p< oo, by means of the elements of R,
and S(k, n, [a, b]), respectively, in L, metric, ie.,

R.(f),= R,/ [a b]),=inf{|f—Rl,: ReR,},
SHf) =8, (a,b]),= inf{lf—ol,: @€ Sk, n, [a,b])}.

By IflIl,=1fV1,tasy we shall denote the L, norm of f on [a,b]
(1< p< o).

Throughout the paper C, C,, C,,.., D, D,,.. denote positive constants
depending only on the corresponding parameters which can be written in
brackets.

It i1s well known that the rational and spline approximations of functions
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are closely connected. V. A. Popov [ 1] proved the following estimate: If
f€Croq, then for nz 1

n

S <2n P Y RS ).

v=0

In [2] we have obtained the following two estimates:

(i) If feL, [ab], 1<p<oo, £>0, k=1 and «>0, then for
nzmax{l, k—1}

RAf),<Cn = 3 v 'SK(f), 00 ()

v=1

where C=C(p, k, ¢, o, a, b).
(i) ffeL,, [ab], 1<p<oo,e>0, k>1and 0<a<k, then for
n=1

"

Sy, <Cn=* 3 v+ 1) RS )p s

v=0

V. A. Popov [3] obtained connection between the rational uniform
approximation of functions and the polynomial L, (p>1) approximation
of their derivatives. In [4, 5] we have proved some connections between
the rational and spline approximations of functions and their derivatives in
different L, metrics. Yu. A. Brudnyi [6] announced some results, which are
closely connected to ours.

The main result of this paper is announced in [7].

2. THE MAIN RESULT

The aim of this paper is to prove the following improvement of the
estimate (1).

Tueorem 2.1. If felL,[a,b], 1<p<oo, k=21 and «>0, then for
n>zmax{l, k—1}

R(f),<Cn 3. v 'SK(f),, @)

v=1

where C = C(p, k, o).
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Moreover, if we put f(x)=0 for xe (—o0, o)\[a, b], then for n =k — 1

R, (— 0, 00)),,<Cn‘“{llfllp+ T v 1S, [a,b]),,}, 3)

v=1|

where C = C(p,k,a).
Clearly the estimates (2) and (3) do not hold true for p = co.

COROLLARY 2.1. If S¥(f),=0(n"7), 1<p< o, y>0, then R(f),=
O(n™7).

Theorem 2.1 can be used successfully in more general situations but for
rates of convergence not better than O(n~?).

COROLLARY 2.2. If SX(f),=0(n""w(n" ")), where 1<p<oo, k21,
120, and w is any increasing on [0, c0) function which tends to zero as
8-> 0+ and w(20) <2w(d) for 620 then R,(f),=0(n "w(n™")).

3. AUXILIARY RESULTS

The proof of Theorem 2.1 is based on the following statement:

THEOREM 3.1. Let @€ S(k,m, [a, b]), where k=1, m>=1 and [a, b] is
an arbitrary compact interval, and let 1< p<oo. Put ¢(x)=0 for
xe(—o0, 0)\la, b]. Then for each >0 there is a rational function R such
that

1
deg R< DmIn? (e + 7)
and

[0 — Rl L~ 0.0y <Al ol Lylab]>

where D= D{p, k)> 1.

The same statement in another form: In the above assumptions the
following estimate holds true for n> 1:

n
Rn((p’ (—ma w))pgzcxp {—C\/;} ”(P”L,,[a,b],

where C=C(p, k)>0.
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In order to prove Theorem 3.1 we need the following lemma.
LEmMMA 3.1. Let Qe H,, k=20, 1<p<cc, and let 4=[a,b] be an

arbitrary compact interval. Then for each 1. >0 there is a rational function R
such that

1
deg R<DIn’ <e+3>,

1Q = Rl ) < DAIQIl 14

and

for xe(—o0, 0)\4,

14| >“/11|QIIW,
Al +p(x. 4)) 14

[R(x)| <D <

where
a—x  for x<a

D=D(p, k), plx, )= 0 for xed

x—b  for xzb
is the distance from the point x to the interval A and |4} =b—a.
The proof of Lemma 3.1 is based on the following two lemmas:

LemMa 32. If Qe H,, k=20, 1<p<w and A=[—b,b], b>0, then
for xe(—o, o)\4

111,00l x1*

|Q(x)| <CW,

where C = C(k).

Proof. Lemma 3.2 follows immediately from the following well-known
inequalities:

(i) If Qe H,, then for |x| =1

|Q(X)I < ”QHL‘I,[ o1, I]IT,‘.(X)| < “Q“Lx[ 1.1](’X| _f_\/;cz—j)k

<2"HQHL1[ - 1,1,]|x|ks

where T'.(x)=cos(k arccos x) for |x| < 1; see [8]. Consequently, if Qe H,,
then for |x| = b

k k
OGN <2UQl Ly =2 1L
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(ii) If Qe Hy, then

||Q||,mm<6<k)l|Q—J—lﬁf;§,ﬁ. I

LEMMA 33. Ifa>0,0<0<1,0<y< 1 and r =0, r— integer, then there
is a rational function a such that

deg0<31n<e+%>ln(e+%>+4r, (4)
0<l-o(x)<y for |x|<d-dd, (5)
0<G(X)<<—2d—>4rv for |x|>d+éd (6)
d+ x|
and
0<o(x)<1  for xe(—x, ®), (7)

where B> 1 is an absolute constant.

Proof. By Lemma 2 in [9] it follows that if 0 <e <1 and n> 1 then the
rational function S(x)=P(x)/P(—x), P(x)=[1"_,(x—¢™), SeR,,
satisfies

1 C
IS(X)|>aexp (1n(i7s)) for xe[—1, —¢] (8)
and
S(x)<Ce Can f [e, 1 9
[S(x)I < C, Xp(_ln(l/s)> or xele 1], 9)

where C,, C,> 0 are absolute constants.
Using the notations above, put

£= ! n= 1JrC%lnlln +l +1
T et 28 |26, TR\ ’
1

N = ST = T+ 1

where [x] denotes the integer part of x.
Obviously

1 1
degal=2n+2r<B,1n(e+3)ln<e+—>+2r, (10)
Y
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where B, >0 1s an absolute constant. By (8) and the choice of ¢ and n we
get for xe[—1, —¢]o[—1, —6/2]

(L+x)”_ G +x)”

[o(x)| < S S 2C7n1<_1+x)’r (11)
{111(1/8 J
and by (9) we get for xe [¢, 1]2[6/2, 1]
1— 2r
Sz(x)<1 +i>
IT—0o,(x)| = T o SA=-x)"Sx)<(1=x)"y  (12)
2(x)<1 +;c)

Clearly

Consider the rational function

& —x?
o(x)=0(e(x)), (P(x)=m-
We shall show that ¢ satisfies (4)-(7). Indeed, by (10) we obtain

1 1
dego=2dego,<2B,In <e+5> In <e+—>+4r
I

=BIn <e+1> In <e+i>+4r,
o ®

i.e., o satisfies (4). Obviously, (13) implies (7). It remains to show that ¢
satisfies (5) and (6). Clearly, the function ¢ is even, strictly decreasing on
[0, ), (0)=1, ¢(d)=0, lim,_, ,  ¢(x)= —1. Since @(d—d) = /2 and
o(d+ dd) < —§/2, then

< p(x)<1 for |x|<d—dd (14)
—1<o(x)< —6/2  for |x|=>d+dd (15)

By (12) and (14) we get 0< 1 —o(x) <7y for |x| <d—4d, i.e, o satisfies (5).
By (11) and (15) we obtain

2d2 2r 2d 4r
0< < Ty = <
a(x)< (1 +o(x))"y <d2+xz> Y (d+x> Y

for |x| = d+ dd, iec., o satisfies (6). |
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Proof of Lemma3.1. Without loss of generality we shall assume that
A=[—-b,b]. If A=1, then the rational function R=0 satisfies the
requirements of Lemma 3.1.

Let 0 <A< 1. Consider the rational function

R=00Q,

where ¢ is the rational function from Lemma 3.3 with 6=417/2,
d=b/(1+6),y=A4 r=k+1.
By (4) we get

1 1
degdeego+degQ<Bln<e+5>ln<e+—>+4r+k
Y

2 1
<Bln <e+-i;>ln(e+1>+4(k+l)+k

and hence
1
deg R< B, In? (e+z>, B, =B(p, k). (16)

Now we estimate |Q — R||, (4 By (5) we obtain

-6
1Q(x) ~ R(x)] = (1 —a(x))|Q(x)| <A|Q(x)| for IXIsd—5d=mb~ (17)
If d—0d<|x|<d+6dd, ie., (1 —9)/(1+8))b<|x|<b, then by (7) and
Lemma 3.2 we get

k
|Q(X)*R(x)|<|Q(x)|<c(k)(%%< e )
2——b
")

Using (17) and (18) we obtain

b 1/p
10~ Rii= ([ 100 RO 72

—((1 —=8)/(1 +8))b ({1 —38)/(1+3))h b
-(J +] +]
—b —((1=0)/(14+3))b (1 -8)/(1+3)Nh

1-96 ”Q“L(d) 4 b Ve
— Jxthpd) P P
S{Z(b 1 5b)<C1 VIiG +JibilQ(x)| dx

S CAlQ 1)

i/p
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Hence
10 = Rl S C24lQll s Co=Colp, k). (19)

If | x] > b, using (6), Lemma 3.2 and the fact that 4r > k + 4 we obtain

A 4r
| ()|—|O’ )Q ) ’HQHLI,(A)I’X| < 2d > .

(41517 \d+ |x|

|‘Q|L,,u)|xll‘< 2b >k+4

ST b

B (4] AN s

‘C(mr+rx|~b) VIR

Hence
A 41 L4
|R(x )|<C(k)<|A|+|p(|x’A)> /”’g?l;‘ L for x| >». (20)

The estimates (16), (19), and (20) prove Lemma 3.1. |

Proof of Theorem 3.1. Assume that @ e S(k,m, [a,b]), k=1, m=1.
Then there are points xp,=a<x,< - <x,=»5b such that for each i
(1 <i< m) there is polynomial Q;¢e Hk__1 such that ¢(x)=Q,x) for xe
(x; 1»x;). We put o(x)=0 for xe(—oo,0)\[a,b]. Let >0 and
1< p<oo.

In what follows we shall use the following notations: 4 = [a, 4],

A():('—“w;xg], Aiz[xi 1,X!-], lzl, 2,..., m,
Am+l:['xm9w)7 A:(”(p“L/,(A)/m)lxp'
Without loss of generality we shall assume that ||, ,#0 for
i=1,2,..m
Now we apply Lemma 3.1 for the function ¢ in cach interval 4,

(1<i<m) with 1,=74/ll¢l 4, We obtain that for each i (1<i<m)
there is a rational function R; such that

1
degR,SDlnz(e-i-T):Dlnz( +”—(p2—:f(4—>, (21)
ko — R, ‘L,,(A) < DA, H(pHL,,(A)—‘D/LA (22)

and

4, 4 A
|R,.(x)l<D<IA‘I+Ip(Ix A)) G for xe(—o. o4, (23)

where D= D(p, k)>0.
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We shall show that the rational function R=37_, R, satisfies the
requirements of Theorem 3.2. First we estimate deg R. To this end we use
(21) and the facts that the function In’(e + x) is concave on [0, c0) and
In?(e + x) <4 In*(e + x*) for x > 0. We get

deg R< Y deg R, < ), DI’ <e+”¢’_!;ﬂ>
i=1 ic1

<4Dp ¥ 1n2<e “"il;;ﬁ )

i=1

<4Dm In? ( '_,;,!;pjﬁu )
=4Dm In? (e H<pj:{;f)>
=4Dm In? (e ><4me In? < ;)
Thus we have
deg R< D min’ (e+%>, D, =D,(p, k). (24)

It remains to estimate |¢ — R, ..., We need some notations.

DerINITION 3.1. We shall call the set of intervals {4,: i, <v<i,},
1 <ip<i, <m+ 1, aleft class of interval or briefly a left class, if |4, <|4,]
forv=igy, ip+1,..,i;—land |4, i=|4,]

We shall suppose that {4y} =14, ., ,/>4,l,v=1,2,..,m

By £ we shall denote the set of all left classes of intervals.

Some Properties of the left classes of intervals. (a) If K, Ke, then
Kn K= or Kc K or Kc K. Therefore the relation K c K realizes order
in the set 2 with the final element the left class {4,: 1 <v<m+1}.

(b) For each i (1 <i<m+ 1) there is exactly one left class K,e Q
such that the interval 4, is the last interval is K, ie., K,= {4,: i, <v<i}.
In what follows we shall use this notation. Thus there is one to one
mapping of the set {4,: 1 <v<m+1} on the set Q. Consequently, the
number of the elements of 2 is m + 1.

(c) HKeQand 4,e K (1 <i<m+1), then K,c K.

DEFINITION 3.2. We shall call the left class K left subclass of first order
of the left class K, if K< K, K+# K and there is no class K*e Q, K*#K
such that K< K* < K, i.e., K follows K immediately.
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By Q; (1<i<m+ 1) we shall denote the set of all subclasses of first
order of the left class K; and by yu; the number of the elements of 2.

(d) Wehavefori=12,. . m+1

K= 1) Ku{4}

KeQ,;

More exactly, for each i (1<i<m+1) there are indexes 0<j,<
J1< - <j,=i—1so0 that

K={4,j,+1<s<i}=1{) K, v {4},

Q.={K, :1<v<y},

Jv*

K,={4,j,.1+1<s<,}

Hence |4,/>14)>|4,1>(4,/>  >14,| and |4]<|4,] for

S=j, 0+ L Jj, 42 ji— L v=1,2,., u,.

(e) FEach class Ke 2, K#K,,, = {4,: 1<v<m+1}, is a left sub-
class of first order of some left class and therefore Q=7+ Q, U {K,, .}
On the otherhand 2, Q,= (¥ for i # j. Consequently,

Z Hi=m. (25)

The properties (a)— (e) of the left classes follow immediately by the
definitions.

Analogously (more exactly symmetrically) we introduce the notions right
class of intervals and right subclass of first order of some right class. We
shall denote by 2* the set of all right classes, by K* the right class in which
A, is the first interval (0 <i<m), by 2 the set of all right subclass of first
of K* and by p* the number of the elements in Q*. The right classes have
properties symmetrical to the properties (a)-(e). We formulate only the
following property:

s

]
<

uFf=m (26)

We need the following lemmas, where we use the notations introduced
above.
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LeMMA 3.4, The following inequality holds true for 1 <i<m:

Y Rix)

A4,€ K;
where C = C(p, k).

Proof. Let K;={4,:i,<v<i}. If i;=1, then the estimate (27) follows
by (23) immediately.
Let iy <i and x = x,. By (23) we obtain

! 14, O
SDid 2 (2‘ ) Rk

V=i ::lexldi—x—_xi

|4,] 3 A
gc(\AfH-x—x,.) ‘A,—\l/” Jor Xz x, (27)

Y R(x)

ave K;

By the definition of left class it follows that |4,| < |4,], v=1i,, io+1,.., i— L.
Denote

G ,={v:274)<14,)<2 74,1}, r=12..

Clearly, for r>=1

14, MR
Z < i _ 1/p
veG_, Zs:le.\'lﬁi—x X,- lA\l
o —r+1 4
< Z < 2 |4, ) 1
s=1

S2”'iA,-i+\A,'k+X—X,' (2¥r\AI’\)lm

2 2 "4, ;
S37 Y f = dt
2 plA,‘i P 0 t2 |Ai|+|A,'|+X—X,-
<252 3 |,/p)r< }AII >3 1

41 +x—x;/ 14/ e
Consequently
& |4, >4 1
R, <DlA - -
A‘gk, ‘(X) rgl \re§,< i':v |Asl +x~xi lAv|l/p

<2SD/1A( ]A,l x>3 1 i 2’(3 - 1/p)r

41 +x— 47 &
14, >
<C(ld,-\ﬁLx—x, |47 C=C(p k). |

The importance of the notations introduced will become clear by the
following lemma.

640/50,2-5
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LeMMA 3.5, The following estimate holds true for i=2,3,...m+ 1.

[3 R

ve= |

SC(p+ 1) 4747,

4
where C = C(p, k).

Proof. Let 2<i<m+ 1. By the property (d) of the left classes of inter-
vals it follows that there are indexes 0 <j, < j, < -~ < j,=i—1 so that

Hi
Ki={A4,j,+1<s<i} :U uid),
K/\:{As jt I+ g < }
‘Qi:{K/v lﬁvg,u,}
Hence
402141 > 4, 2 14,1 = - =14, |, 4] <4,
for s=j,_,+4Lj, +2,j,—Lv=12,,u,. (28)
We have
i—1 V4
Y R.(x)| dx
dity =y
/o i1 P
"o (LY R ax
Aty =1 JAI v= jo+ 1
=1 +1.

First we estimate /, using (23) and the fact that |4, ] > |4,]; see (28). We

obtain for xe 4,
fo i4, 4 A4
< Z D< - ) e
2\l +x—x,/ 14,

/o 4
<DiA Z ( 14 > !
\*\ 1

- A0+ x—x,0) 14,77

v=1

Denote

G, = (V2 |d,)| <14,/ <27 |4, 1 <v< o),
r=0, +1, £2,...
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Clearly, for r =0, xe 4, we have

¥ 14, )4 1
ve G, Z{VOZV|ASI+X_X'~ lAv|l/p
Z ( 2r+l|A’0| )4 1 |
< 1-2714, | +x—x, ) Q24,7

4 A 4 2|4 4
SE SN AN TN
2 Mio' 2|A1-0|+x Xi 1 t'2|A/O|+X Xy

25
<—
2r/p|Aj0| 1/p

If r< —1, then

Z( |4, ] R
ve G, Z.{'O:vl‘dsl_*x_xi*l |Av|1/p

< i( 2r+l'A/0| )4 1
S A \s 24, Hid ) Hx—x ) (214,

5=

< 24 J‘L ( 2 |A/0| >4 dt
271 AP o N 27 A 1A 4 x = x,

23 2 IA l 3 23_ 3—1/pyr
<57 & < —
2"”|A,-0|””<\A | +x— ,1> 4,17

Jo

Consequently
S Ro|<om 3T (gt ) :
X)) =
v=1 ’ r= - veG, \-‘lA |+X Xi—1 lAv|l/p

e 25 o 23
<DiA
{ ZT-:O 2r/p|Ale 1/p + Z:l pIER \/p)rMm' l/p}

A4
,A ll/ps CI:Cl(p, k)
Integrating we obtain
Jo 4 CPXPA/’
11=2ﬂ~1j S R,(x) dx<2”*‘|A,.|—m—<Czl"A”, (29)
a4 l, = Jo

where C, = C,(p, k).
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Now we estimate /,. Using Lemma 3.4 we obtain

o A0\ A
«Z(wﬂ >Ml"’ (30)

y=1

He

)3

=1

iy

> Rux)

ve=j 14l

[i] Rv(x) S

v=jo+ 1

Denote y,=x; +32% 4,1, I=1,2,.,p;, and y, ., =x, ;. We have
X = yu,+1 < .V;z,< <)
If xe[y,, o), then by (28) and (30) we get

2 (4. >3 AA
g Cw Js _
,\; ( A =y ) 14,0

r=1

} T R

v jy+ 1

2 14} S
< CiA4 _—
\gl (SIA/J +x— yl) [4,] 14,17
Hence
x| b N e
<J dx)
M lv= o+
o Hi ‘A . ‘ 3 1 r lip
< CiA L _ | 4
{J. (Zl (S 14, +X*,V1> M/\l”"> r>
4 L |A | ip 1 lip
<Ci —_—_> dx}
,-;1 {J"l <S |A/\.| +Xx— Y1 |A/‘\‘
o |
< CiA \;1 T
Consequently
il »
Z R.(x)] dx<CiA7A47, Cy=Cs(p, k). (31
Tolv=jo+ 1

Let xe [y, 4, y/1, 1 <I<p;. By (30) we obtain
/ |A | )3 1
CiA = ,
{Z (Z’M |A,;.| +x =) 14,01

( )
— I+ Y |A |+V Vit |A |l/p

—CA{ +0

izl Rl <

v=jo+1

First we estimate ¢,. Denote

G,=1{s:2"|4 |4, | <2774, 1<s <, r=0,1,..

.i/|
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Using (28) we obtain

G A
St x =y 14,1

( 2r+1|A“| >3 ]
m- 2|40+ x =y 0] 214,17

2¢ Cu(p)
< Z 2r/n|A |l/p<1A,|l/p'
r=0 Ji J

5 r

<

8
u D18 gM

0

~
i

Using (28) again we get

£ ettt
PSS
: S—l)IA,»\.|+x—y1+1 ;1

I+1
Consequently
iil R(x)<C)A{ + i ( |4, >3 : }
v=jo+1 ’ D |A|l/p s=i+1 Na, | +x—=yi1) 14, |]/p '

i—1

where Cs=Cs(p, k). Now we take the L, norm and obtain
Y Rux)

I/p
([,
Yied lv=jo+ 1
vioodx \'7
<can{(]” 7
RYES Ji

i |A :l )317 dx >l/p}
+ Ss
2 (f»m<(s—l)ld-l+x—y/+1 14;]

s=1+1

<C5,{A{ 5 T W}.

5= I+l

Consequently, for /=1, 2,..., u,

i—1

ZR()

ve=jo+ 1

dx <CAPA?,  Co=Cqlp, k).

Yi+1

Combining this estimate with (31) we get

l,

i—1

2 Ry(x)

v=1

dx<j Z R.(x) dx

-1 lv=1

<C(p+1) 2747, C=C(p, k). |

The following lemma can be proved in a simalar (symmetrical) way.
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LEMMA 3.6.  The following estimate holds true for i=0,1,.,m—1:

m

2 R(x)

y=i+1

"dx< Clu*+1) 1747,

4;

where C = C(p, k).

Completion of the Proof of Theorem 3.1. Using (22), (25), (26), and
Lemmas 3.5 and 3.6 we obtain
1ip
Lp(4; ))

o —Rll 1y ooy = ”w sz ¢ — Z

m+1 |
=(Z
v Lol %.90) i=0
m+1 14
S{ y 3/;1<L Y R,(x)
i=0 i

4] Joto = R+ |

dx

Y Ry(x

Py >d

Lip
x}

<3 {C(,ug‘-l— 1)APA7+ Y (C(u;+ 1) APA7+ DPAT A7

i=1

Lip
+C(p*+ 1) 2747+ Cpy 1+ 1) i”A”}

m+ 1 1/p
sc,m( Y pi+m+ Z u,>

i=1 i=0
<3C,m""PAA=3C illol )
Consequently
10 =Rl iy SCUON Ly, C=Clp, k)

This estimate together with (24) establishes Theorem 3.1. ||

Proof of Theorem?21. Let o,,€S(k,m,[a,b]) and ¢, satisfies
ILf— (Pm||z,,(4)—5 (f),, m=1, 4=[a,b]. For i=1 we have @, — @, 1€
S(k, 271, A) and

| — (Pz'*l”L,,(A)S If— (Pz/||Lp(A)+ If— @1l L,,(A)gzsgi' l(f)p-

Using Theorem 3.1 and the function ¢, — @1 with 4 =2"" 9* we obtain
that there is a rational function R, such that

deg R,<D2'*'In%(e+2“~7%),  D=D(p,k)>1, (32)
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and

@i — @ai-1— Rill 14y < 20 oy — @yl Lo(4)
Sz(i —s}a%—ls;‘z‘-lil(f)p. (33)

Let s>0 be an integer. Consider the rational function R=Y$_, R
where R,=¢,€ H,_,. First we estimate deg R. By (32) we obtain

i

N=deg R< Z deg R, < Y D-2""'In*(e+2" ") +k—1

i=0

<D (a+1) 22(5—1 Dy(a+1)%- 2%

i=1
Consequently
N=deg R< D,(a+ 1)?2°, D,=D,(p, k). (34)
Now estimate [/ — Rl 4. By (33) we get
1 = Rl

<|\f- (p2-‘||L,,(A)+ Z oo — @oi-s —Ri”L,,(A)+ o w‘ROHL,,(A)

i=1

<SS, + 2 20 ISE),

i=1

<21+1 . 27.\‘1 z ziask‘_(f)p

i=0

29
<22a+1 ,2—7.\'01 Z v lsf(f)p

v=1

Hence, by (34) and the estimates above it follows that for each s> 0

25

Ru(f;4), <2427 % v ISK(f),,, (35)
v=1

where N< Dy(a+1)2-2°5, Dy=Dy(p, k)> 1.
Now let n>max{l,k—1}. f n<A=D,(x+ 1) then

n

R/l <R ([}, <SS ), <A™ 3 v 18NS,

v=1
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Consequently

R.(f),<Cn Z vELSK(f for max{l.k—1}<n<A4, (36)
v=
where C; =C(p, k).
Let n> A. We choose s 0 such that 4-2°<n<A4-2°*". Then by (35)
we obtain

=]

Rn(j‘)p<22:x+ | ,27.\'0(

v

v SN,

1

I

SColpokyayn™ 3 v 'SK(S),.

v=1

These estimates together with (36) imply (2). The estimate (3) can be
proved in a similar way. ||

Proof of Corollary 2.2. Since w(20)<2w(é) for 420, then w(4d)<
204+ 1) w(d) for 4,6=20. Now if fe L, [a, b] and SX(f),<Cin""o(n h,
1 € p < o0, then using Theorem 2.1 we obtain

R(f),<Cn * Y v 'Cyv To(v")

<Cyn Yy v ! ""<f+1>w(n "
v
v=1

foraz=zy+2. 1

Remark 3.1. The proof of Theorem 2.1 is based on Lemma 3.3. Clearly,
this lemma can be used successfuly for the uniform rational approximation
of functions with finite support on (—oo, o). It is easy to see that
Lemma 3.3 implies the following estimate: If

p(x)=1-—]x| for |x|<1,
o(x)=0 for |x|>1
then
R(¢, (— 0, 0))c=0(e V"), C>0, (37)
where

R,(p, (—o0,00))c= inf  sup  [o(x)—R(x)|.

ReR, xe(—ow,x)
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The estimate (37) generalizes the well-known result of D. Newman [10]:

R

Jx1, [ =1, 1])e=0(e ") to the interval (— o0, o).
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